Методика оценки погрешностей косвенных измерений. Расчёт погрешности косвенных измерений

Оценка погрешности прямых многократных измерений

При оценке погрешности прямых многократных измерений рекомендуется принять следующий порядок выполнение операций.

. (8)


.

    Задается значение доверительной вероятности Р. В лабораториях практикума принято задавать Р=0,95.

.

    Определяется суммарная погрешность

,

где δх – приборная погрешность, Δх – случайная погрешность.

    Оценивается относительная погрешность результата измерений

.

    Записывается окончательный результат в виде

, с α=… Е=…%.

, Р=…, Е=… (7)

Следует иметь в виду, что сами формулы теории ошибок справедливы для большого число измерений. Поэтому значение случайной, а следовательно, и суммарной погрешности определяется при малом n с большой ошибкой. При вычислении Δх при числе измерений
рекомендуется ограничиваться одной значащей цифрой, если она больше 3 и двумя, если первая значащая цифра меньше 3. Например, если Δх = 0,042, то отбрасываем 2 и пишем Δх =0,04, а если Δх =0,123, то пишем Δх =0,12.

Число разрядов результата и суммарной погрешности должно быть одинаковым. Поэтому среднее арифметическое погрешности должно быть одинаковым. Поэтому среднее арифметическое вычисляется вначале на один разряд больше, чем измерение, а при записи результата его значение уточняется до числа разрядов суммарной ошибки.

Оценка погрешности косвенных многократных измерений

При оценке погрешности косвенных многократных измерений
, являющейся функцией других независимых величин
, можно использовать два способа.

Первый способ используется, если величина y определяется при различных условиях опыта. В этом случае для каждого из значений
вычисляется
, а затем определяется среднее арифметическое из всех значенийy i

.

Систематическая (приборная) погрешность находится на основании известных приборных погрешностей всех измерений по формуле. Случайная погрешность в этом случае определяется как ошибка прямого измерения.

Второй способ применяется, если данная функция y определяется несколько раз при одних и тех же измерений. В этом случае величина
рассчитывается по средним значениям
.. Систематическая (приборная) погрешность, как и при первом способе, находится на основании известных приборных погрешностей всех измерений по формуле

,

где - приборные ошибки прямых измерений величины,- частные производные функции по переменной.

Для нахождения случайной погрешности косвенного измерения вначале рассчитываются средние квадратичные ошибки среднего арифметического отдельных измерений. Затем находится средняя квадратичная ошибка величины y . Задание доверительной вероятности α, нахождение коэффициента Стьюдента , определение случайной и суммарной ошибок осуществляются так же, как и в случае прямых измерений. Аналогичным образом представляется результат всех расчетов в виде

, с Р=… Е=…%.

Пример , получим формулу для расчета систематической погрешности при измерении объема цилиндра. Формула вычисления объема цилиндра имеет вид

.

Частные производные по переменным d и h будут равны

,
.

Таким образом, формула для определения абсолютной систематической погрешности при измерении объема цилиндра имеет следующий вид

,

где
и
приборные ошибки при измерении диаметра и высоты цилиндра

Пример : Определить погрешность мощности, которая рассеивается в резисторе по формуле
со следующими величинами тока и сопротивления резистору, которые определяются прямым измерением: R = 1,10 ± 0.05 Ом; I = 1,20 ± 0.05 A. Результаты приведены со средними квадратичными отклонениями средних арифметических R и I . Оценка истинного (среднего) значения мощности:

Вт

Для оценки точности полученного значения вычисляем частичные производные и частичные погрешности косвенных измерений:

= 1,2 2 ·0,05=0,072 А 2 Ом;

=2·1,2·1,1·0,05= 0,132 А 2 Ом

Среднее квадратичное отклонение косвенного измерения мощности, которое вычислено за формулой составляет

=0, 15 А 2 Ом =0,15 Вт.

Р = 1,58 ± 0.15 Вт.

Любые измерения всегда производятся с какими-то погрешностями, связанными с ограниченной точностью измерительных приборов, неправильным выбором, и погрешностью метода измерений, физиологией экспериментатора, особенностями измеряемых объектов, изменением условий измерения и т.д. Поэтому в задачу измерения входит нахождение не только самой величины, но и погрешности измерения, т.е. интервала, в котором вероятнее всего находится истинное значение измеряемой величины. Например, при измерении отрезка времени t секундомером с ценой деления 0,2 с можно сказать, что истинное значение его находится в интервале от с до
с. Таким образом, измеряемая величина всегда содержит в себе некоторую погрешность
, где и X – соответственно истинное и измеренное значения исследуемой величины. Величина
называется абсолютной погрешностью (ошибкой) измерения, а выражение
, характеризующее точность измерения, называется относительной погрешностью.

Вполне естественно стремление экспериментатора произвести всякое измерение с наибольшей достижимой точностью, однако такой подход не всегда целесообразен. Чем точнее мы хотим измерить ту ил иную величину, тем сложнее приборы мы должны использовать, тем больше времени потребуют эти измерения. Поэтому точность окончательного результата должна соответствовать цели проводимого эксперимента. Теория погрешностей дает рекомендации, как следует вести измерения и как обрабатывать результаты, чтобы величина погрешности была минимальной.

Все возникающие при измерениях погрешности обычно разделяют на три типа – систематические, случайные и промахи, или грубые ошибки.

Систематические погрешности обусловлены ограниченной точностью изготовления приборов (приборные погрешности), недостатками выбранного метода измерений, неточностью расчетной формулы, неправильной установкой прибора и т.д. Таким образом, систематические погрешности вызываются факторами, действующими одинаковым образом при многократном повторении одних и тех же измерений. Величина этой погрешности систематически повторяется либо изменяется по определенному закону. Некоторые систематические ошибки могут быть исключены (на практике этого всегда легко добиться) путем изменения метода измерений, введение поправок к показаниям приборов, учета постоянного влияния внешних факторов.

Хотя систематическая (приборная) погрешность при повторных измерениях дает отклонение измеряемой величины от истинного значения в одну сторону, мы никогда не знаем в какую именно. Поэтому приборная погрешность записывается с двойным знаком

Случайные погрешности вызываются большим числом случайных причин (изменением температуры, давления, сотрясения здания и т.д.), действия которых на каждое измерение различно и не может быть заранее учтено. Случайные погрешности происходят также из-за несовершенства органов чувств экспериментатора. К случайным погрешностям относятся и погрешности обусловленные свойствами измеряемого объекта.

Исключить случайны погрешности отдельных измерений невозможно, но можно уменьшить влияние этих погрешностей на окончательный результат путем проведения многократных измерений. Если случайная погрешность окажется значительно меньше приборной (систематической), то нет смысла дальше уменьшать величину случайной погрешности за счет увеличения числа измерений. Если же случайная погрешность больше приборной, то число измерений следует увеличить, чтобы уменьшить значение случайной погрешности и сделать ее меньше или одного порядка с погрешностью прибора.

Промахи, или грубые ошибки, - это неправильные отсчеты по прибору, неправильная запись отсчета и т.п. Как правило, промахи, обусловленные указанными причинами хорошо заметны, так как соответствующие им отсчеты резко отличаются от других отсчетов. Промахи должны быть устранены путем контрольных измерений. Таким образом, ширину интервала в котором лежат истинные значения измеряемых величин, будут определять только случайные и систематические погрешности.

2 . Оценка систематической (приборной) погрешности

При прямых измерениях значение измеряемой величины отсчитывается непосредственно по шкале измерительного прибора. Ошибка в отсчете может достигать нескольких десятых долей деления шкалы. Обычно при таких измерениях величину систематической погрешности считают равной половине цены деления шкалы измерительного прибора. Например, при измерении штангенциркулем с ценой деления 0,05 мм величина приборной погрешности измерения принимают равной 0,025 мм.

Цифровые измерительные приборы дают значение измеряемых ими величин с погрешностью, равной значению одной единицы последнего разряда на шкале прибора. Так, если цифровой вольтметр показывает значение20,45 мВ, то абсолютная погрешность при измерении равна
мВ.

Систематические погрешности возникают и при использовании постоянных величин, определяемых из таблиц. В подобных случаях погрешность принимается равной половине последнего значащего разряда. Например, если в таблице значение плотности стали дается величиной, равной 7,9∙10 3 кг/м 3 , то абсолютная погрешность в этом случае равна
кг/м 3 .

Некоторые особенности в расчете приборных погрешностей электроизмерительных приборов будут рассмотрены ниже.

При определении систематической (приборной) погрешности косвенных измерений функциональной величины
используется формула

, (1)

где - приборные ошибки прямых измерений величины , - частные производные функции по переменной .

В качестве примера, получим формулу для расчета систематической погрешности при измерении объема цилиндра. Формула вычисления объема цилиндра имеет вид

.

Частные производные по переменным d и h будут равны

,
.

Таким образом, формула для определения абсолютной систематической погрешности при измерении объема цилиндра в соответствии с (2. ..) имеет следующий вид

,

где
и
приборные ошибки при измерении диаметра и высоты цилиндра

3. Оценка случайной погрешности.

Доверительный интервал и доверительная вероятность

Ля подавляющего большинства простых измерений достаточно хорошо выполняется так называемый нормальный закон случайных погрешностей (закон Гаусса) , выведенный из следующих эмпирических положений.

    погрешности измерений могут принимать непрерывный ряд значений;

    при большом числе измерений погрешности одинаковой величины, но разного знака встречаются одинаково часто,

    чем больше величина случайной погрешности, тем меньше вероятность ее появления.

График нормального закона распределения Гаусса представлен на рис.1. Уравнение кривой имеет вид

, (2)

где
- функция распределения случайных ошибок (погрешностей), характеризующая вероятность появления ошибки
, σ – средняя квадратичная ошибка.

Величина σ не является случайной величиной и характеризует процесс измерений. Если условия измерений не изменяются, то σ остается постоянной величиной. Квадрат этой величины называют дисперсией измерений. Чем меньше дисперсия, тем меньше разброс отдельных значений и тем выше точность измерений.

Точное значение средней квадратичной ошибки σ, как и истинное значение измеряемой величины, неизвестно. Существует так называемая статистическая оценка этого параметра, в соответствии с которой средняя квадратичная ошибка равняется средней квадратичной ошибке среднего арифметического . Величина которой определяется по формуле

, (3)

где - результат i -го измерения; - среднее арифметическое полученных значений; n – число измерений.

Чем больше число измерений, тем меньше и тем больше оно приближается к σ. Если истинное значение измеряемой величины μ, ее среднее арифметическое значение, полученное в результате измерений , а случайная абсолютная погрешность , то результат измерений запишется в виде
.

Интервал значений от
до
, в который попадает истинное значение измеряемой величины μ, называется доверительным интервалом. Поскольку является случайной величиной, то истинное значение попадает в доверительный интервал с вероятностью α, которая называется доверительной вероятностью, или надежностью измерений. Эта величина численно равна площади заштрихованной криволинейной трапеции. (см. рис.)

Все это справедливо для достаточно большого числа измерений, когда близка к σ. Для отыскания доверительного интервала и доверительной вероятности при небольшом числе измерений, с которым мы имеем дело в ходе выполнения лабораторных работ, используется распределение вероятностей Стьюдента. Это распределение вероятностей случайной величины , называемой коэффициентом Стьюдента , дает значение доверительного интервала в долях средней квадратичной ошибки среднего арифметического .

. (4)

Распределение вероятностей этой величины не зависит от σ 2 , а существенно зависит от числа опытов n . С увеличением числа опытов n распределение Стьюдента стремится к распределению Гаусса.

Функция распределения табулирована (табл.1). Значение коэффициента Стьюдента находится на пересечении строки, соответствующей числу измерений n , и столбца, соответствующего доверительной вероятности α

Таблица 1.

Пользуясь данными таблицы, можно:

    определить доверительный интервал, задаваясь определенной вероятностью;

    выбрать доверительный интервал и определить доверительную вероятность.

При косвенных измерениях среднюю квадратичную ошибку среднего арифметического значения функции вычисляют по формуле

. (5)

Доверительный интервал и доверительная вероятность определяются так же, как и в случае прямых измерений.

Оценка суммарной погрешности измерений. Запись окончательного результата.

Суммарную погрешность результата измерений величины Х будем определять как среднее квадратичное значение систематической и случайной погрешностей

, (6)

где δх – приборная погрешность, Δх – случайная погрешность.

В качестве Х может быть как непосредственно, так и косвенно измеряемая величина.

, α=…, Е=… (7)

Следует иметь в виду, что сами формулы теории ошибок справедливы для большого число измерений. Поэтому значение случайной, а следовательно, и суммарной погрешности определяется при малом n с большой ошибкой. При вычислении Δх при числе измерений
рекомендуется ограничиваться одной значащей цифрой, если она больше 3 и двумя, если первая значащая цифра меньше 3. Например, если Δх = 0,042, то отбрасываем 2 и пишем Δх =0,04, а если Δх =0,123, то пишем Δх =0,12.

Число разрядов результата и суммарной погрешности должно быть одинаковым. Поэтому среднее арифметическое погрешности должно быть одинаковым. Поэтому среднее арифметическое вычисляется вначале на один разряд больше, чем измерение, а при записи результата его значение уточняется до числа разрядов суммарной ошибки.

4. Методика расчета погрешностей измерений.

Погрешности прямых измерений

При обработке результатов прямых измерений рекомендуется принять следующий порядок выполнение операций.

. (8)


.

.

    Определяется суммарная погрешность

    Оценивается относительная погрешность результата измерений

.

    Записывается окончательный результат в виде

, с α=… Е=…%.

5. Погрешность косвенных измерений

При оценке истинного значения косвенно измеряемой величины , являющейся функцией других независимых величин
, можно использовать два способа.

Первый способ используется, если величина y определяется при различных условиях опыта. В этом случае для каждого из значений вычисляется
, а затем определяется среднее арифметическое из всех значений y i

. (9)

Систематическая (приборная) погрешность находится на основании известных приборных погрешностей всех измерений по формуле. Случайная погрешность в этом случае определяется как ошибка прямого измерения.

Второй способ применяется, если данная функция y определяется несколько раз при одних и тех же измерений. В этом случае величина рассчитывается по средним значениям . В нашем лабораторном практикуме чаще используется второй способ определения косвенно измеряемой величины y . Систематическая (приборная) погрешность, как и при первом способе, находится на основании известных приборных погрешностей всех измерений по формуле

Для нахождения случайной погрешности косвенного измерения вначале рассчитываются средние квадратичные ошибки среднего арифметического отдельных измерений. Затем находится средняя квадратичная ошибка величины y . Задание доверительной вероятности α, нахождение коэффициента Стьюдента , определение случайной и суммарной ошибок осуществляются так же, как и в случае прямых измерений. Аналогичным образом представляется результат всех расчетов в виде

, с α=… Е=…%.

6. Пример оформления лабораторной работы

Лабораторная работа №1

ОПРЕДЕЛЕНИЕ ОБЪЕМА ЦИЛИНДРА

Принадлежности: штангенциркуль с ценой деления 0,05 мм, микрометр с ценой деления 0,01 мм, цилиндрическое тело.

Цель работы: ознакомление с простейшими физическими измерениями, определение объема цилиндра, расчет погрешностей прямых и косвенных измерений.

Порядок выполнения работы

Провести не менее 5 раз измерения штангенциркулем диаметра цилиндра, а микрометром его высоту.

Расчетная формула для вычисления объема цилиндра

где d – диаметр цилиндра; h – высота.

Результаты измерений

Таблица 2.

;

Абсолютная погрешность

;
.

5. Относительная погрешность, или точность измерений

; Е = 0,5%.

6. Запись окончательного результата

Окончательный результат для исследуемой величины записывается в виде

, Е = 0,5%.

Примечание. В окончательной записи число разрядов результата и абсолютной погрешности должно быть одинаковым.

6. Графическое представление результатов измерений

Результаты физических измерений очень часто представляют в графической форме. Графики обладают рядом важных преимуществ и ценных свойств:

а) дают возможность определить вид функциональной зависимости и пределы, в которых она справедлива;

б) позволяют наглядно проводить сравнение экспериментальных данных с теоретической кривой;

в) при построении графика сглаживают скачки в ходе функции, возникающие за счет случайных ошибок;

г) дают возможность определять некоторые величины или проводить графическое дифференцирование, интегрирование, решение уравнения и др.

Рафики, как правило, выполняются на специальной бумаге (миллиметровой, логарифмической, полулогарифмической). Принято по горизонтальной оси откладывать независимую переменную, т.е. величину, значение которой задает сам экспериментатор, а по вертикальной оси – ту величину, которую он при этом определяет. Следует иметь в виду, что пересечение координатных осей не обязательно должно совпадать с нулевыми значениями x и у. При выборе начала координат следует руководствоваться тем, чтобы полностью использовалась вся площадь чертежа (рис.2.).

На координатах осях графика указываются не только названия или символы величин, но и единицы их измерения. Масштаб по осям координат следует выбирать так, чтобы измеряемые точки располагались по всей площади листа. При этом масштаб должен быть простым, чтобы при нанесении точек на график не производить арифметических подсчетов в уме.

Экспериментальные точки на графике должны изображаться точно и ясно. Точки, полученные при различных условиях эксперимента (например, при нагревании и охлаждении), полезно наносить разными цветами или разными значками. Если известна погрешность эксперимента, то вместо точки лучше изображать крест или прямоугольник, размеры которого по осям соответствуют этой погрешности. Не рекомендуется соединять экспериментальные точки между собой ломаной линией. Кривую на графике следует проводить плавно, следя за тем, чтобы экспериментальные точки располагались как выше, так и ниже кривой, как показано на рис.3.

При построении графиков помимо системы координат с равномерным масштабом применяют так называемые функциональные масштабы. Подобрав подходящие функции x и y, можно на графике получить более простую линию, чем при обычном построении. Часто это бывает нужно при подборе к данному графику формулы для определения его параметров. Функциональные масштабы применяют также в тех случаях, когда на графике нужно растянуть или сократить какой-либо участок кривой. Чаще всего из функциональных масштабов используют логарифмический масштаб (рис.4).

Документ

От конкретных условий, требований и возможностей оценки погрешности результатов измерений . Согласно общим положениям информационной теории...

  • Погрешности измерений

    Документ

    В.И.Ивероновой. М., Наука, 1967. 4. П.В.Новицкий, И.А.Зограф. Оценка погрешностей результатов измерений . Л., Энергоатомиздат, 1991. 5. Лабораторные работы по...

  • Методические указания по определению погрешностей при измерениях в лабораторном практикуме по физике

    Методические указания

    ... измерения искомой вели­чины в обязательном порядке входит оценка погрешности полу­ченного результата . Без такой оценки результат ... значение абсолютной погрешности и сам результат измерений . Как правило, точность оценки погрешности оказывается очень...

  • № измерения

    Пусть известны две независимо измеренных физических величины и с погрешностями и соответственно. Тогда справедливы следующие правила:

    1. Абсолютная погрешность суммы (разности) есть сумма абсолютных погрешностей. То есть, если

    Более разумная (учитывающая то, что величины и независимы и маловероятно, что их истинные значения одновременно окажутся на краях диапазонов) оценка получается по формуле:

    На всех школьных олимпиадах допускается применение любой из этих двух формул. Аналогичные формулы справедливы для случая нескольких (более двух) слагаемых.

    Пример:

    Пусть величина , ,

    .

    2. Относительная погрешность произведения (частного) есть сумма относительных погрешностей.

    То есть, если

    Как и в предыдущем случае, более разумной будет формула

    Аналогичные формулы справедливы для случая нескольких (более двух) множителей.

    Таким образом, в результате сложения двух величин сначала вычисляется абсолютная погрешность величины, а после этого может быть вычислена относительная погрешность.

    Пример:

    Пусть величина , ,


    3. Правило для возведения в степень. Если , то .

    Пример:


    4. Правило умножения на константу. Если .

    Пример:

    5. Более сложные функции величин разбиваются на более простые вычисления, погрешности которых можно рассчитать по формулам представленным выше.

    Пример:

    Пусть

    6. Если расчётная формула сложна и не сводиться к описанным выше случаем, то, школьники знакомые с понятием частной производной могут найти погрешность косвенного измерения следующим образом: пусть , тогда

    или более простой оценкой:

    Пример:

    Пусть

    7. Школьники, не знакомые с производными, могут пользоваться методом границ, который состоит в следующем: пусть нам известно, что и для каждой величины диапазон в котором лежит её истинное значение. Рассчитаем минимальное и максимальное возможное значение величины на области задания величин :

    За абсолютную погрешность величины возьмём полуразность максимального и минимального значения:

    Пример:

    Пусть

    Правила округления

    При обработке результатов измерений часто приходится производить округление. При этом нужно следить, чтобы ошибка, возникающая при округлении, была хотя бы на порядок меньше остальных погрешностей. Однако оставлять слишком много значащих цифр тоже неправильно, поскольку влечёт за собой потерю драгоценного времени. В большинстве случаев бывает достаточно погрешность округлить до двух значащих цифр, а результат до того же порядка, что и погрешность. При записи же конечного ответа принято оставлять в погрешности только одну значащую цифру, за исключением случая, когда эта цифра единица, тогда нужно оставить две значащих цифры в погрешности. Также часто порядок числа выносится за скобку, таким образом, чтобы первая значащая цифра числа осталась либо в порядке единиц, либо в порядке десятых.



    Например, пусть были проведены измерения модуля Юнга стали и Алюминия и были получены следующие значения (до округления):

    , , , .

    Правильно записанный конечный ответ тогда будет иметь вид:

    Построение графиков

    Во многих задачах, предлагаемых на физических олимпиадах школьников, требуется снять зависимость одной физической величины от другой, а затем проанализировать эту зависимость (сравнить экспериментальную зависимость с теоретической, определить неизвестные параметры теоретической зависимости). График является наиболее удобным и наглядным способом представления данных и их дальнейшего анализа. Поэтому в критериях оценивания большинства экспериментальных задач присутствуют баллы за график, даже если построение графика не требуется явно в условии. Таким образом, если при решении задачи Вы сомневаетесь нужно ли в данной задаче построение графика или нет - сделайте выбор в пользу графика.

    Правила построения графика

    1. График строится на миллиметровой бумаге. Если на экспериментальном туре олимпиады миллиметровая бумага не была предоставлена сразу, нужно попросить её у организаторов.

    2. График нужно подписать в верхней части, чтобы всегда можно было установить, какой участник строил этот график. В работе следует указать, что был построен соответствующий график, на случай если график будет потерян во время проверки.



    3. Ориентация миллиметровой бумаги может быть как альбомная, так и книжная.

    4. На графике обязательно должны присутствовать координатные оси. Вертикальная ось проводится в левой части графика, а горизонтальная ось в нижней части.

    5. Вертикальная ось должна соответствовать значениям функции, а горизонтальная – значениям аргумента.

    6. Оси на графике рисуются с отступом 1-2см от края миллиметровой бумаги.

    7. Каждая ось должна быть подписана, то есть должна быть указана физическая величина, отложенная вдоль этой оси, и (через запятую) единица её измерения. Записи вида « », « » и « » эквивалентны, но первые два варианта предпочтительнее. Горизонтальная ось подписывается слева у верхнего конца, а вертикальная снизу у правого конца.

    8. Оси не обязательно должны пересекаться в точке (0,0).

    9. Масштаб графика и положение начала отсчёта на координатных осях выбираются так, чтобы наносимые точки располагались по возможности на всей площади листа. При этом нули координатных осей могут вообще не попадать на график.

    10. Линии, проведённые на миллиметровой бумаге через сантиметр, должны попадать на круглые значения величин. С графиком удобно работать, если 1 см на миллиметровой бумаги соответствуют 1, 2, 4, 5 *10 n единиц измерения по данной оси. Часть делений на оси нужно подписать. Подписанные деления должны находится на равном расстоянии друг от друга. Подписанных делений на оси должно быть не менее 4х и не более 10ти.

    11. Точки на график нужно наносить так, чтобы они были чётко и ясно видны. Для того чтобы показать, что величина наносимая на график имеет погрешность, из каждой точки проводятся отрезки вверх и вниз, вправо и влево. Длина горизонтальных отрезков соответствует погрешности величины, отложенной по горизонтальной оси, длина вертикальных отрезков - погрешности величины, отложенной по вертикальной. Таким образом, обозначаются области определения экспериментальной точки, называемые крестами ошибок. Кресты ошибок обязательны к нанесению на графике, за исключением случаев: в условии задачи дано непосредственное указание не оценивать погрешности, погрешность составляет меньше 1 мм в масштабе соответствующей оси. В последнем случае необходимо указать, что погрешность значений слишком мала для нанесения по этой оси. В таких случаях считается, что размер точки соответствует ошибке измерения.

    12. Стремитесь к тому, чтобы ваш график был удобен, понятен и аккуратен. Стройте его карандашом, чтобы можно было исправить ошибки. Не подписывайте рядом с точкой соответствующее ей значение - это загромождает график. Если на одном графике показано сразу несколько зависимостей, используйте разные символы или цвета для точек. Для определения, какой тип экспериментальных точек, какой зависимости соответствует, используйте легенду графика. На графике допускаются зачёркивания (если подвёл ластик или под рукой не оказалось хорошего карандаша), но делать их нужно аккуратно. Не стоит использовать штрих-корректор - это выглядит некрасиво.

    Примечание: все вышеперечисленные правила происходят исключительно из соображений удобства работы с графиком. Однако, при проверке работ на олимпиадах жюри пользуются этими правилами как формальными критериями: плохо выбран масштаб - минус полбалла. Поэтому на олимпиаде следует неукоснительно придерживаться этих правил.

    Пример:

    Справа приведен график, построенный не по критериям, а слева, построенный по указанным выше правилам.

    Рассмотрим сначала случай, когда величина у зависит только от одной переменной х , которая находится прямым измерением,

    Среднее арифметическое <y > можно найти, подставив в (8) вместо х среднее арифметическое <х >.

    .

    Абсолютную погрешность можно рассматривать как приращение функции (8) при приращении аргумента ∆х (полная погрешность измеряемой величины х ). При малых значениях ∆х она приближенно равна дифференциалу функции

    , (9)

    где - производная функции, вычисленная при . Относительная погрешность будет равна

    .

    Пусть определяемая величина у является функцией нескольких переменных х i ,

    . (10)

    Предполагается, что погрешности всех величин в рабочей формуле носят случайный характер, независимы и рассчитаны с одной и той же доверительной вероятностью (например Р = 0,95). Такую же доверительную вероятность будет иметь и погрешность искомой величины. В этом случае наиболее вероятное значение величины <у > определяют по формуле (10), используя для расчета наиболее вероятные значения величин х i , т. е. их средние значения:

    <у > = f (<x 1 >, <x 2 >, …,<x i >, …,<x m >).

    В этом случае абсолютная погрешность окончательного результата Δу определяется по формуле

    , (11)

    где ∂у /∂х i – частные производные функции у по аргументам х i , вычисленные для наиболее вероятных значений величин х i . Частная производная – это производная, которая вычисляется от функции у по аргументу х i при условии, что все остальные аргументы считаются постоянными.

    Относительную погрешность величины у получим, поделив ∆у на <у>

    . (12)

    Принимая во внимание, что (1/у ) dy/dx представляет производную по х от натурального логарифма у относительную погрешность можно записать так

    . (13)

    Формулу (12) удобнее использовать в тех случаях, когда в зависимости (10) измеряемые величины х i входят, в основном, в виде слагаемых, а формула (13) является удобной для расчетов тогда, когда (10) представляет собой произведения величин х i . В последнем случае предварительное логарифмирование выражения (10) существенно упрощает вид частных производных. Измеряемая величина у является величиной размерной и логарифмировать размерную величину нельзя. Чтобы устранить эту некорректность, нужно разделить у на постоянную, имеющую данную размерность. После логарифмирования получится дополнительное слагаемое, которое не зависит от величин х i и поэтому исчезнет при взятии частных производных, так как производная от постоянной величины равна нулю. Поэтому при логарифмировании наличие такого слагаемого просто подразумевается.



    Учитывая простую связь между абсолютной и относительной погрешностями ε у = Δу /<у >, легко по известной величине Δу вычислить ε у и наоборот.

    Функциональная связь между погрешностями прямых измерений и погрешностью косвенного измерения для некоторых простых случаев приведена в табл. 3.

    Рассмотрим некоторые особые случаи, возникающие при вычислении погрешностей измерений. Приведенные выше формулы для расчета погрешностей косвенных измерений справедливы только тогда, когда все х i независимые величины и измерены различными приборами и методами. На практике это условие не всегда соблюдается. Например, если какие-либо физические величины в зависимости (10) измеряются одним и тем же прибором, то приборные погрешности Δх i пр этих величин уже не будут независимыми, и приборная погрешность косвенно измеряемой величины Δу пр в этом случае будет несколько больше, чем при «квадратичном суммировании». Например, если площадь пластины длиной l и шириной b измерены одним штангенциркулем, то относительная приборная погрешность косвенного измерения будет

    (ΔS/S ) пр = (Δl /l ) пр + (Δb/b ) пр,

    т.е. погрешности суммируются арифметически (погрешности Δl пр и Δb пр одного знака и их величины одинаковы), вместо относительной приборной погрешности

    при независимых погрешностях.

    Таблица 3

    Функциональная связь погрешностей прямых и косвенных измерений

    Рабочая формула Формула для расчета погрешности

    При проведении измерений возможны случаи, когда величины х i имеют разные значения, специально изменяемые или задаваемые во время эксперимента, например, вязкость жидкости по методу Пуазейля определяют для разной высоты столба жидкости над капилляром, или ускорение свободного падения g определяют с помощью математического маятника для разных длин). В таких случаях следует вычислять значение косвенно измеряемой величины у в каждом из n опытов по отдельности, а в качестве наиболее вероятного значения ее брать среднее значение, т.е. . Случайная погрешность Δу сл вычисляется как погрешность при прямом измерении. Вычисление приборной погрешности Δу пр производится через частные производные по формуле (11), а окончательная полная погрешность косвенно измеряемой величины подсчитывается по формуле

    При обработке результатов косвенных измерений физической величины, связанной функционально с физическими величинами А, В и С, которые измеряются прямым способом, сначала определяют относительную погрешность косвенного измерения e= DХ/Х пр, пользуясь формулами, приведенными в таблице (без доказательств).

    Абсолютную погрешность определяется по формуле DХ=Х пр *e,

    где e выражается десятичной дробью, а не в процентах.

    Окончательный результат записывается так же, как и в случае прямых измерений

    Вид функции Формула
    Х=А+В+С
    Х=А-В
    Х=А*В*С
    Х=А n
    Х=А/В
    Х=

    (+ http://fiz.1september.ru/2001/16/no16_01.htm полезно) Как правильно проводить измерения http://www.fizika.ru/fakultat/index.php?theme=01&id=1220

    Пример: Вычислим погрешность измерения коэффициента трения с помощью динамометра. Опыт заключается в том, что брусок равномерно тянут по горизонтальной поверхности и измеряют прикладываемую силу: она равна силе трения скольжения.

    С помощью динамометра взвесим брусок с грузами: 1,8 Н. F тр =0,6 Н

    μ=0,33. Инструментальная погрешность динамометра (находим по таблице) составляет Δ и =0,05Н, Погрешность отсчета (половина цены деления)

    Δ о =0,05Н. Абсолютная погрешность измерения веса и силы трения 0,1 Н.

    Относительная погрешность измерения (в таблице 5-я строчка)

    Следовательно абсолютная погрешность косвенного измерения μ составляет 0,22*0,33=0,074

    Ответ:

    Измерить физическую величину - значит сравнить ее с другой однородной величиной, принятой за единицу измерения. Измерение может быть произведено с помощью:

    1. мер, представляющих собой образцы единицы измерения (метр, гиря, литровый сосуд и т.п.),

    2. измерительных приборов (амперметр, манометр и т.п.),

    3. измерительных установок, под которыми понимают совокупность мер, измерительных приборов и вспомогательных элементов.

    Измерения бывают прямые и косвенные. В прямых измерениях физическая величина измеряется непосредственно. Прямыми измерениями являются, например, измерение длины линейкой, времени - секундомером, силы тока - амперметром.

    В косвенных измерениях непосредственно измеряют не ту величину, значение которой нужно узнать, а другие величины, с которыми искомая величина связана определенной математической зависимостью. Например, плотность тела определяют по измерению его массы и объема, а сопротивление - по измерению силы тока и напряжения.



    В силу несовершенства мер и измерительных приборов, а также наших органов чувств, измерения не могут быть выполнены точно, т.е. всякое измерение дает лишь приближенный результат. Кроме того, часто причиной отклонения результатов измерений является природа самой измеряемой величины. Например, температура, измеряемая термометром или термопарой в определенной точке печи, колеблется вследствие конвекции и теплопроводности в определенных пределах. Мерой оценки точности результата измерения служит погрешность измерения (ошибка измерения) .

    Для оценки точности указывают либо абсолютную погрешность, либо относительную погрешность измерения. Абсолютная погрешность выражается в единицах измеряемой величины. Например, отрезок пути, пройденный телом, , измерен с абсолютной погрешностью . Относительная погрешность измерения - это отношение абсолютной погрешности к значению измеряемой величины. В приведенном примере относительная погрешность равна . Чем меньше погрешность измерения, тем выше его точность.

    По источникам своего происхождения погрешности измерения подразделяют на систематические, случайные и грубые (промахи).

    1. Систематические погрешности - погрешности измерения, величина которых остается постоянной при повторных измерениях, проводимых одним и тем же методом, с помощью одних и тех же измерительных приборов. Причинами систематических погрешностей являются:



    · неисправности, неточности измерительных приборов

    · неправомерность, неточность использованной методики измерения

    Примером систематических погрешностей может быть измерение температуры термометром со смещенной нулевой точкой, измерение тока неправильно отградуированным амперметром, взвешивание тела на весах при помощи гирь без учета выталкивающей силы Архимеда.

    Для устранения или уменьшения систематических погрешностей надо тщательно проверить измерительные приборы, произвести измерение одних и тех же величин разными методами, вводить поправки, когда ошибки заведомо известны (поправки на выталкивающую силу, поправки на показания термометра).

    2. Грубые ошибки (промахи) - существенное превышение величины погрешности, ожидаемой при данных условиях измерения. Промахи появляются в результате неправильной записи показаний прибора, неправильного отсчета по прибору, из-за ошибки в расчетах при косвенных измерениях. Источник промахов - невнимательность экспериментатора. Путь устранения этих погрешностей - аккуратность экспериментатора, исключение переписывания протоколов измерения.

    3. Случайные погрешности - погрешности, величина которых меняется случайным образом при повторных измерениях одной и той же величины одним и тем же методом при помощи тех же приборов. Источником случайных погрешностей является неконтролируемая невоспроизводимость условий измерения. Например, во время измерения неконтролируемым образом может меняться температура, влажность, атмосферное давление, напряжение в электрической сети, состояния органов чувств экспериментатора. Исключить случайные погрешности нельзя. При многократных измерениях случайные ошибки подчиняются статистическим законам, и их влияние можно учесть.