Современные проблемы науки и образования. Транспорт углекислоты кровью

Карбоангидраза (синоним: карбонатдегидратаза, карбонатгидролиаза) - фермент, катализирующий обратимую реакцию гидратации диоксида углерода: СО 2 + Н 2 О Û Н 2 СО 3 Û Н + + НСО 3 . Содержится в эритроцитах, клетках слизистой оболочки желудка, коре надпочечников, почках, в незначительных количествах - в ц.н.с., поджелудочной железе и других органах. Роль К. в организме связана с поддержанием кислотно-щелочного равновесия , транспортом СО 2 , образованием соляной кислоты слизистой оболочкой желудка. Активность К. в крови в норме довольно постоянна, но при некоторых патологических состояниях она резко меняется. Повышение активности К. в крови отмечается при х различного генеза, нарушениях кровообращения II-III степени, некоторых заболеваниях легких (бронхоэктазах, пневмосклерозе), а также при беременности. Снижение активности этого фермента в крови происходит при ацидозе почечного генеза, гипертиреозе. При внутрисосудистом гемолизе активность К. появляется в моче, в то время как в норме она отсутствует.

Контролировать активность К. в крови целесообразно во время оперативных вмешательств на сердце и легких, т.к. она может служить показателем адаптивных возможностей организма, а также при терапии ингибиторами карбоангидразы - гипотиазидом, диакарбом.

Для определения активности К. применяют радиологические, иммуноэлектрофоретические, колориметрические и титриметрические методы. Определение производят в цельной крови, взятой с гепарином, или в гемолизированных эритроцитах. Для клинических целей наиболее приемлемы колориметрические методы определения активности К. (например,

модификации метода Бринкмана), основанные на установлении времени, необходимого для сдвига рН инкубационной смеси с 9,0 до 6,3 в результате гидратации СО 2 . Воду, насыщенную углекислотой, смешивают с индикаторно-буферным раствором и определенным количеством сыворотки крови (0,02 мл ) или взвеси гемолизированных эритроцитов. В качестве индикатора используют феноловый красный. По мере диссоциации молекул угольной кислоты все новые молекулы СО 2 подвергаются ферментативной гидратации. Для получения сравнимых результатов реакция должна протекать всегда при одинаковой температуре, наиболее удобно поддерживать температуру тающего льда - 0°. Время контрольной реакции (спонтанной реакции гидратации СО 2) в норме составляет 110-125 с . В норме при определении этим методом активность К. в среднем равна 2-2,5 условным единицам, а в пересчете на 1 млн. эритроцитов 0,458 ± 0,006 условным единицам (за единицу активности К. принимают увеличение скорости катализируемой реакции в 2 раза).

Библиогр.: Клиническая оценка лабораторных тестов, под ред. Н.У. Тица, пер. с англ., с. 196, М., 1986.

Карбоангидраза (синоним: карбонатдегидратаза, карбонатгидролиаза) - фермент, катализирующий обратимую реакцию гидратации диоксида углерода: СО 2 + Н 2 О Û Н 2 СО 3 Û Н + + НСО 3 . Содержится в эритроцитах, клетках слизистой оболочки желудка, коре надпочечников, почках, в незначительных количествах - в ц.н.с., поджелудочной железе и других органах. Роль карбоангидразы в организме связана с поддержанием кислотно-щелочного равновесия , транспортом СО 2 , образованием соляной кислоты слизистой оболочкой желудка. Активность карбоангидразы в крови в норме довольно постоянна, но при некоторых патологических состояниях она резко меняется. Повышение активности карбоангидразы в крови отмечается при анемиях различного генеза, нарушениях кровообращения II-III степени, некоторых заболеваниях легких (бронхоэктазах, пневмосклерозе), а также при беременности. Снижение активности этого фермента в крови происходит при ацидозе почечного генеза, гипертиреозе. При внутрисосудистом гемолизе активность карбоангидразы появляется в моче, в то время как в норме она отсутствует. Контролировать активность карбоангидразы в крови целесообразно во время оперативных вмешательств на сердце и легких, т.к. она может служить показателем адаптивных возможностей организма, а также при терапии ингибиторами карбоангидразы - гипотиазидом, диакарбом.

Для определения активности карбоангидразы применяют радиологические, иммуноэлектрофоретические, колориметрические и титриметрические методы. Определение производят в цельной крови, взятой с гепарином, или в гемолизированных эритроцитах. Для клинических целей наиболее приемлемы колориметрические методы определения активности карбоангидразы (например, модификации метода Бринкмана), основанные на установлении времени, необходимого для сдвига рН инкубационной смеси с 9,0 до 6,3 в результате гидратации СО 2 . Воду, насыщенную углекислотой, смешивают с индикаторно-буферным раствором и определенным количеством сыворотки крови (0,02 мл ) или взвеси гемолизированных эритроцитов. В качестве индикатора используют феноловый красный. По мере диссоциации молекул угольной кислоты все новые молекулы СО 2 подвергаются ферментативной гидратации. Для получения сравнимых результатов реакция должна протекать всегда при одинаковой температуре, наиболее удобно поддерживать температуру тающего льда - 0°. Время контрольной реакции (спонтанной реакции гидратации СО 2) в норме составляет 110-125 с . В норме при определении этим методом активность карбоангидразы в среднем равна 2-2,5 условным единицам, а в пересчете на 1 млн. эритроцитов 0,458 ± 0,006 условным единицам (за единицу активности карбоангидразы принимают увеличение скорости катализируемой реакции в 2 раза).

Библиогр.: Клиническая оценка лабораторных тестов, под ред. Н.У. Тица, пер. с англ., с. 196, М., 1986.

I Карбоангидра́за (синоним: карбонатдегидратаза, карбонатгидролиаза)

фермент, катализирующий обратимую реакцию гидратации диоксида углерода: СО 2 + Н 2 О ⇔ Н 2 СО 3 ⇔ Н + + НСО 3 . Содержится в эритроцитах, клетках слизистой оболочки желудка, коре надпочечников, почках, в незначительных количествах - в ц.н.с., поджелудочной железе и других органах. Роль К. в организме связана с поддержанием кислотно-щелочного равновесия (Кислотно-щелочное равновесие), транспортом СО 2 , образованием соляной кислоты слизистой оболочкой желудка. Активность К. в крови в норме довольно постоянна, но при некоторых патологических состояниях она резко меняется. Повышение активности К. в крови отмечается при анемиях различного генеза, нарушениях кровообращения II-III степени, некоторых заболеваниях легких (бронхоэктазах, пневмосклерозе), а также при беременности. Снижение активности этого фермента в крови происходит при ацидозе почечного генеза, гипертиреозе. При внутрисосудистом гемолизе активность К. появляется в моче, в то время как в норме она отсутствует. Контролировать активность К. в крови целесообразно во время оперативных вмешательств на сердце и легких, т.к. она может служить показателем адаптивных возможностей организма, а также при терапии ингибиторами карбоангидразы - гипотиазидом, диакарбом.

Для определения активности К. применяют радиологические, иммуноэлектрофоретические, колориметрические и титриметрические методы. Определение производят в цельной крови, взятой с гепарином, или в гемолизированных эритроцитах. Для клинических целей наиболее приемлемы колориметрические методы определения активности К. (например, модификации метода Бринкмана), основанные на установлении времени, необходимого для сдвига рН инкубационной смеси с 9,0 до 6,3 в результате гидратации СО 2 . Воду, насыщенную углекислотой, смешивают с индикаторно-буферным раствором и определенным количеством сыворотки крови (0,02 мл ) или взвеси гемолизированных эритроцитов. В качестве индикатора используют феноловый красный. По мере диссоциации молекул угольной кислоты все новые молекулы СО 2 подвергаются ферментативной гидратации. Для получения сравнимых результатов реакция должна протекать всегда при одинаковой температуре, наиболее удобно поддерживать температуру тающего льда - 0°. Время контрольной реакции (спонтанной реакции гидратации СО 2) в норме составляет 110-125 с . В норме при определении этим методом активность К. в среднем равна 2-2,5 условным единицам, а в пересчете на 1 млн. эритроцитов 0,458 ± 0,006 условным единицам (за единицу активности К. принимают увеличение скорости катализируемой реакции в 2 раза).

Библиогр.: Клиническая оценка лабораторных тестов, под ред. Н.У. Тица, пер. с англ., с. 196, М., 1986.

II Карбоангидра́за

  • - фермент, катализирующий обратимую реакцию образования угольной кислоты из диоксида углерода и воды. Ингибиторы К. применяют в медицине для лечения нек-рых сердечно-сосудистых и др. заболеваний...

    Естествознание. Энциклопедический словарь

  • - I Карбоангидра́за фермент, катализирующий обратимую реакцию гидратации диоксида углерода: СО2 + Н2О ⇔ Н2СО3 ⇔ Н+ + НСО3...

    Медицинская энциклопедия

  • - цинксодержащий фермент группы углерод-кислород-лиаз, катализирующий обратимую реакцию расщепления угольной кислоты до двуокиси углерода и воды...

    Большой медицинский словарь

  • - угольная ангидраза, карбонат-гидролиаза, фермент класса лиаз, катализирующий обратимое образование угольной кислоты из двуокиси углерода и воды: CO2 + H2O ↔ H2CO3. К. - металлопротеид, содержащий Zn...
  • Сфигмограмма сонной артерии в норме:
  • Флебосфигмограмма яремной вены в норме:
  • 205. Понятие о белковом минимуме и белковом оптимуме. Белки полноценные и неполноценные.
  • 206. Калорические коэффициенты питательных веществ.
  • 207. Суточная потребность в солях и воде.
  • 208. Значение витаминов в питании.
  • 209. Сущность процесса пищеварения. Функциональная система, поддерживающая постоянный уровень питательных веществ в крови.
  • Функциональная система, поддерживающая уровень питательных веществ в крови
  • 210. Методы изучения функций пищеварительных желез. Сущность созданного и. П. Павловым хронического метода исследования, его преимущества.
  • 211. Роль полости рта в процессе пищеварения. Состав и свойства слюны.
  • 212. Схемы рефлекторной дуги безусловного слюноотделительного рефлекса. Приспособительный характер слюноотделения к различным пищевым и отвергаемым веществам.
  • 213. Общая характеристика процессов пищеварения в желудке. Состав и свойства желудочного сока.
  • 215. Состав и свойства панкреатического сока.
  • 216. Регуляция панкреатической секреции: а) сложно-рефлекторная фаза; б) гуморальная фаза.
  • 217. Роль желчи в пищеварении. Состав и свойства желчи.
  • 218. Регуляция желчеобразования. Основные пищевые продукты, усиливающие желчеобразование.
  • 219. Механизм желчевыделения, его рефлекторная и гуморальная регуляции.
  • 220. Кишечный сок, его состав и свойства.
  • 221.Виды сокращений мускулатуры желудочно-кишечного тракта, их характеристика. Регуляция моторной функции желудочно-кишечного тракта.
  • 222.Всасывание основных пищевых веществ, механизм всасывания, его регуляция.
  • 223.Пищевой центр. Современные представления о механизмах возникновения голода, жажды, насыщения.
  • 224.Принципы организации функциональной системы дыхания.
  • 225. Дыхание, его основные этапы.
  • 226. Механизм внешнего дыхания. Биомеханика вдоха и выдоха.
  • 227. Давление в плевральной полости и его происхождение и роль в механизме внешнего дыхания. Изменения давления в плевральной полости в разные фазы дыхательного цикла.
  • 228. Жизненная ёмкость лёгких и составляющие её компоненты. Методы их определения. Остаточный объём.
  • 230. Состав атмосферного и выдыхаемого воздуха. Альвеолярный воздух как внутренняя среда организма. Понятие о парциальном давлении газов.
  • 231. Газообмен в лёгких. Парциальное давление газов (о2и со2) в альвеолярном воздухе и напряжение газов в крови. Основные закономерности перехода газов через мембрану.
  • 232. Обмен газов между кровью и тканями. Напряжение о2и со2в крови, тканевой жидкости и клетках.
  • 233. Транспорт о2кровью, кривая диссоциации оксигемоглобина, её характеристика, кислородная ёмкость крови.
  • 234. Транспорт углекислоты кровью, значение карбоангидразы, взаимосвязь транспорта о2и со2.
  • 235. Иннервация дыхательных мышц.
  • 236. Дыхательный центр. Современные представления о структуре и локализации. Автоматия дыхательного центра.
  • 237. Зависимость деятельности дыхательного центра от газового состава крови.
  • 238. Роль хеморецепторов в регуляции дыхания. Роль механорецепторов в регуляции дыхания.
  • 239.Роль углекислоты в регуляции дыхания. Механизм первого вдоха новорождённого.
  • 240.Механизм периодической деятельности дыхательного центра. Теории возникновения периодической деятельности дыхательного центра.
  • (Спросить на консультации)
  • 241. Влияние на дыхательный центр раздражения различных рецепторов и отделов центральной нервной системы.
  • 242. Условно-рефлекторная регуляция дыхания. Защитные дыхательные рефлексы.
  • 243. Дыхание при мышечной работе. Дыхание при пониженном атмосферном давлении (высотная болезнь). Дыхание при повышенном атмосферном давлении (кессонная болезнь).
  • 244. Искусственное дыхание. Периодическое дыхание. Патологические типы дыхания.
  • 245. Почки и их функция. Особенности кровоснабжения нефрона.
  • 246. Процесс мочеобразования: гломерулярная фильтрация, канальцевая реабсорбция, канальцевая секреция.
  • 247. Осмотическое разведение и концентрирование мочи.
  • 248. Роль почек в осморегуляции и волюморегуляции. Роль почек в регуляции ионного состава крови. Роль почек в регуляции кислотно-основного состояния.
  • 249. Экскреторная функция почек. Инкреторная функция почек. Метаболическая функция почек.
  • 250. Нервная регуляция деятельности почек.
  • 251. Диурез. Состав мочи. Мочевыведение и мочеиспускание. Возрастные особенности.
  • 252. Гемодиализ. Искусственная почка.
  • 253. Понятие об иммунитете. Классификация иммунитета. Специфический и неспецифический иммунитет.
  • 254. Клеточный и гуморальный иммунитет. Центральные и периферические органы иммунной системы.
  • 234. Транспорт углекислоты кровью, значение карбоангидразы, взаимосвязь транспорта о2и со2.

    Углекислый газ транспортируется следующими путями:

    Растворенный в плазме крови - около 25 мл / л.

    Связанный с гемоглобином (карбгемоглобин) - 45 мл / л.

    В виде солей угольной кислоты - букарбонаты калия и натрия в плазме крови - 510 мл / л.

    Таким образом, в состоянии покоя кровь транспортирует 580 мл углекислого газа в 1 л. Итак, основной формой транспорта СО2 является бикорбонаты плазмы, образующихся благодаря активному протеканию карбоангидразнои реакции.

    В эритроцитах содержится фермент карбоангидраза (КГ), который катализирует взаимодействие углекислого газа с водой с образованием угольной кислоты, распадается с образованием бикарбонатного иона и протона. Бикарбонат внутри эритроцита взаимодействует с ионами калия, выделяемых из калиевой соли гемоглобина при восстановлении последнего. Так внутри эритроцита образуется бикарбонат калия. Но бикарбонатно ионы образуются в значительной концентрации и поэтому по градиенту концентрации (в обмен на ионы хлора) поступают в плазму крови. Так в плазме образуется бикарбонат натрия. Протон, образовавшегося при диссоциации угольной кислоты, реагирует с гемоглобином с образованием слабой кислоты ННb.

    В капиллярах легких эти процессы идут в обратном направлении. С ионов водорода и бикарбонатных ионов образуется угольная кислота, которая быстро распадается на углекислый газ и воду. Углекислый газ удаляется наружу.

    Итак, роль эритроцитов в транспорте углекислоты такова:

    образование солей угольной кислоты;

    образования карбгемоглобин.

    Диффузия газов в тканях подчиняется общим законам (объем диффузии прямо пропорционален площади диффузии, градиента напряжения газов в крови и тканях). Площадь диффузии увеличивается, а толщина диффузного слоя уменьшается при увеличении количества функционирующих капилляров, что имеет место при повышении уровня функциональной активности тканей. В этих же условиях возрастает градиент напряжения газов за счет снижения в активно работающих органах Ро2 и повышения Рсо2 (газовый состав артериальной крови, как и альвеолярного воздуха остается неизменным!). Все эти изменения в активно работающих тканях способствуют увеличению объема диффузии О2 и СО2 в них. Потребление О2 (СО2) по спирограмму определяют по изменению (сдвигу) кривой вверх за единицу времени (1 минуту).

    235. Иннервация дыхательных мышц.

    Дыхательный центр, расположенный в продолговатом мозге, посылает импульсы к мотонейронам спинного мозга , иннервирующим дыхательные мышцы. Диафрагма иннервируется аксонами мотонейронов, расположенных на уровнеIII-IV шейных сегментов спинного мозга. Мотонейроны, отростки которых образуют межреберные нервы, иннервирующие межреберные мышцы, расположеныв передних рогах (III-XII) грудных сегментов спинного мозга.

    236. Дыхательный центр. Современные представления о структуре и локализации. Автоматия дыхательного центра.

    Информация о состоянии кислородно-углекислого баланса в организме поступает в дыхательный центр, который представляет нейронную организацию центральной нервной системы, определяющую функцию дыхания.

    В анатомическом смысле дыхательный центр – это совокупность нейронов в локальной зоне центральной нервной системы, без которой дыхание становится невозможным.

    Такой центр находится в ретикулярной формации продолговатого мозга в областидна IV желудочка .

    Он состоит из двух отделов:

    1) центр вдоха (инспираторный отдел);

    2) центр выдоха (экспираторный отдел).

    Нейроны бульбарного центра обладают автоматией и находятся в реципрокных взаимоотношениях между собой.

    Несовершенность координации дыхательного акта центрами продолговатого мозга была доказана методом перерезок. Так после отделения продолговатого мозга от вышележащих отделов чередование вдохов и выдохов сохраняется, но длительность и глубина дыханий становится нерегулярной.

    В физиологическом смысле дыхательный центр – это совокупность нейронов, расположенных на различных уровнях центральной нервной системы (от спинного мозга до коры головного мозга), которые обеспечивают координированное ритмическое дыхание, то есть делают функцию дыхания более совершенной.

    В целом, регуляция активности дыхательного центра может быть представлена тремя уровнями:

    1) на уровне спинного мозга располагаются центры диафрагмальных и межрёберных нервов, обусловливающие сокращение дыхательных мышц. Однако этот уровень регуляции дыхания не может обеспечить ритмическую смену фаз дыхательного цикла, так как большое количество афферентных импульсов от дыхательного аппарата непосредственно направляются в продолговатый мозг, то есть минуя спинной мозг.

    2) на уровне продолговатого мозга и варолиевого моста находится основной дыхательный центр, который перерабатывает разнообразные афферентные импульсы, идущие от дыхательного аппарата, а также от основных сосудистых рефлексогенных зон. Этот уровень регуляции обеспечивает ритмическую смену фаз дыхания и активность спиномозговых мотонейронов, аксоны которых иннервируют дыхательную мускулатуру;

    3) на уровне верхних отделов головного мозга , включая кору головного мозга, осуществляются адекватные приспособительные реакции системы дыхания к изменяющимся условиям окружающей среды.

    Ритмические импульсы от дыхательного центра продолговатого мозга поступают по нисходящим двигательным путям к мотонейронам дыхательных мышц спинного мозга.

    Мотонейроны диафрагмальных нервов находятся в передних рогах серого веществаIII - IV шейных сегментов .

    Мотонейроны межрёберных нервов расположены в передних рогахгрудного отдела спинного мозга.

    Отсюда возбуждение поступает к дыхательной мускулатуре (к диафрагме и межрёберным мышцам).

    Мотонейроны спинного мозга

    Бульбарный дыхательный центр

    Мотонейроны спинного мозга получают от проприорецепторов мышц грудной клетки сигналы о степени их растяжения при вдохе.

    Эти сигналы могут изменять число вовлечённых в активность мотонейронов и, таким образом, определяют особенности дыхания, осуществляя регуляцию дыхания на уровне спинного мозга

    Бульбарный дыхательный центр получает афферентные импульсы от механорецепторов лёгких, дыхательных путей и дыхательных мышц, от хемо- и прессорецепторов сосудистых рефлексогенных зон.

    Для нормальной деятельности бульбо-понтинного дыхательного центра необходима постоянная информация о состоянии внутренней среды организма и самих органов дыхания.

    Нисходящие нервные влияния на дыхательный центр оказывают верхние отделы головного мозга , включая корковые нейроны. Так, эмоциональные возбуждения, охватывающие структуры,лимбико-ретикулярного комплекса и в первую очередьгипоталамическую область , распространяются в нисходящем направлении и вызывают изменение деятельности дыхательного центра.

    Гипоталамус также оказывает влияния при изменениях во внешней среде, изменении метаболизма, а также как высший центр вегетативных регуляций.

    Речь, относящаяся к высшим мозговым функциям коры человека, возможна на основе дыхательных движений, вызывающих прохождение воздуха через голосовой аппарат.

    Поэтому во время речи к дыхательному центру приходят влияния, подстраивающие его деятельность для необходимых речевых реакций.

    Одновременно дыхательный центр управляет тем объёмом лёгочной вентиляции, который необходим для поддержания дыхательного гомеостаза. Поэтому дыхание в условиях речи становится апериодическим.

    На роль коры в регуляции дыхания указывает возможность произвольного контроля дыхания, когда человек может сознательно изменить дыхание: сделать его более глубоким или поверхностным, частым или редким, произвести задержку дыхания на определённое время.

    Таким образом, на примере особенностей дыхательного центра наблюдаются общие принципы организации любых нервных центров, в частности:

    1) принцип изоморфизма (принципиально однотипная структурная организация);

    2) принцип иерархичности (многоуровневое расположение центрального представительства);

    3) принцип субординации (соподчинение нервных центров, когда высшие центры модулируют работу низших и, чем выше уровень центра, тем более сложную регуляцию он обеспечивает).

    Углекислый газ является продуктом метаболизма клеток тканей и поэтому переносится кровью от тканей к легким. Углекислый газ выполняет жизненно важную роль в поддержании во внутренних средах организма уровня рН механизмами кислотно-основного равновесия. Поэтому транспорт углекислого газа кровью тесно взаимосвязан с этими механизмами.

    В плазме крови небольшое количество углекислого газа находится в растворенном состоянии; при РС02= 40 мм рт. ст. переносится 2,5 мл/100 мл крови углекислого газа, или 5 %. Количество растворенного в плазме углекислого газа в линейной зависимости возрастает от уровня РС02.

    В плазме крови углекислый газ реагирует с водой с образованием Н+ и HCO3. Увеличение напряжения углекислого газа в плазме крови вызывает уменьшение величины ее рН. Напряжение углекислого газа в плазме крови может быть изменено функцией внешнего дыхания, а количество ионов водорода или рН - буферными системами крови и HCO3, например путем их выведения через почки с мочой. Величина рН плазмы крови зависит от соотношения концентрации растворенного в ней углекислого газа и ионов бикарбоната. В виде бикарбоната плазмой крови, т. е. в химически связанном состоянии, переносится основное количество углекислого газа - порядка 45 мл/100 мл крови, или до 90 %. Эритроцитами в виде карбаминового соединения с белками гемоглобина транспортируется примерно 2,5 мл/100 мл крови углекислого газа, или 5 %. Транспорт углекислого газа кровью от тканей к легким в указанных формах не связан с явлением насыщения, как при транспорте кислорода, т. е. чем больше образуется углекислого газа, тем большее его количество транспортируется от тканей к легким. Однако между парциальным давлением углекислого газа в крови и количеством переносимого кровью углекислого газа имеется криволинейная зависимость: кривая диссоциации углекислого газа.

    Карбоангидраза . (синоним: карбонатдегидратаза, карбонатгидролиаза) - фермент, катализирующий обратимую реакцию гидратации диоксида углерода: СО 2 + Н 2 О Û Н 2 СО 3 Û Н + + НСО 3 . Содержится в эритроцитах, клетках слизистой оболочки желудка, коре надпочечников, почках, в незначительных количествах - в ц.н.с., поджелудочной железе и других органах. Роль карбоангидразы в организме связана с поддержанием кислотно-щелочного равновесия, транспортом СО 2 , образованием соляной кислоты слизистой оболочкой желудка. Активность карбоангидразы в крови в норме довольно постоянна, но при некоторых патологических состояниях она резко меняется. Повышение активности карбоангидразы в крови отмечается при анемиях различного генеза, нарушениях кровообращения II-III степени, некоторых заболеваниях легких (бронхоэктазах, пневмосклерозе), а также при беременности. Снижение активности этого фермента в крови происходит при ацидозе почечного генеза, гипертиреозе. При внутрисосудистом гемолизе активность карбоангидразы появляется в моче, в то время как в норме она отсутствует. Контролировать активность карбоангидразы в крови целесообразно во время оперативных вмешательств на сердце и легких, т.к. она может служить показателем адаптивных возможностей организма, а также при терапии ингибиторами карбоангидразы - гипотиазидом, диакарбом.